
Scrum (software development)

Scrum is an agile framework for developing, delivering, and sustaining complex products,[1] with an initial
emphasis on software development, although it has been used in other fields including research, sales, marketing

and advanced technologies.[2] It is designed for teams of ten or fewer members, who break their work into goals
that can be completed within timeboxed iterations, called sprints, no longer than one month and most commonly
two weeks. The Scrum Team track progress in 15-minute time-boxed daily meetings, called daily scrums. At the
end of the sprint, the team holds sprint review, to demonstrate the work done, and sprint retrospective to improve
continuously.

Name

Key ideas

History

Roles
Product owner

Development team

Scrum master

Workflow
Sprint

Sprint planning

Daily scrum

Sprint review

Sprint retrospective

Backlog refinement

Cancelling a sprint

Artifacts
Product backlog

Sprint backlog

Increment

Extensions

Limitations

Tools for implementation

Scrum values

Adaptations
Scrumban

Contents

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

1 of 21 11/17/20, 6:56 PM

Scrum of scrums

Large-scale Scrum

Criticisms

See also

References

Further reading

External links

The software development term scrum was first used in a 1986 paper titled "The New New Product
Development Game". The term is borrowed from rugby, where a scrum is a formation of players. The term

scrum was chosen by the paper's authors because it emphasizes teamwork.[3]

Scrum is occasionally seen written in all-capitals, as SCRUM.[4] While the word itself is not an acronym, its

capitalized styling likely comes from an early paper by Ken Schwaber[5] that capitalized SCRUM in its title.[6][7]

While the trademark on the term Scrum itself has been allowed to lapse, it is deemed as owned by the wider

community rather than an individual,[8] so the leading capital for Scrum is retained in this article.

Many of the terms used in Scrum are typically written with leading capitals (e.g., Scrum Master, Daily Scrum).
However, to maintain an encyclopedic tone, this article uses normal sentence case for these terms (e.g., scrum
master, daily scrum) – unless they are recognized marks (such as Certified Scrum Master).

Scrum is a lightweight, iterative and incremental framework for managing complex work.[9][10] The framework
challenges assumptions of the traditional, sequential approach to product development, and enables teams to
self-organize by encouraging physical co-location or close online collaboration of all team members, as well as
daily face-to-face communication among all team members and disciplines involved.

A key principle of Scrum is the dual recognition that customers will change their minds about what they want or

need (often called requirements volatility[11]) and that there will be unpredictable challenges—for which a
predictive or planned approach is not suited.

As such, Scrum adopts an evidence-based empirical approach – accepting that the problem cannot be fully
understood or defined up front, and instead focusing on how to maximize the team's ability to deliver quickly, to
respond to emerging requirements, and to adapt to evolving technologies and changes in market conditions.

Hirotaka Takeuchi and Ikujiro Nonaka introduced the term scrum in the context of product development in their

1986 Harvard Business Review article, 'The New New Product Development Game'.[12] Takeuchi and Nonaka

later argued in The Knowledge Creating Company[13] that it is a form of "organizational knowledge creation,

Name

Key ideas

History

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

2 of 21 11/17/20, 6:56 PM

[...] especially good at bringing about innovation continuously, incrementally and spirally".

The authors described a new approach to commercial product development that would increase speed and
flexibility, based on case studies from manufacturing firms in the automotive, photocopier and printer

industries.[12] They called this the holistic or rugby approach, as the whole process is performed by one cross-
functional team across multiple overlapping phases, in which the team "tries to go the distance as a unit, passing

the ball back and forth".[12] (In rugby football, a scrum is used to restart play, as the forwards of each team

interlock with their heads down and attempt to gain possession of the ball.[14])

The Scrum framework was based on research by Schwaber with Tunde Babatunde at DuPont Research Station
and University of Delaware. Tunde advised that attempts to develop complex products, such as software, that
weren't based in empiricism were doomed to higher risks and rates of failure as the initial conditions and
assumptions change. Empiricism, using frequent inspection and adaptation, with flexibility and transparency is
the most suitable approach.

In the early 1990s, Ken Schwaber used what would become Scrum at his company, Advanced Development
Methods; while Jeff Sutherland, John Scumniotales and Jeff McKenna developed a similar approach at Easel

Corporation, referring to it using the single word scrum.[15]

Ken and Jeff worked together to integrate their ideas into a single framework, Scrum. They tested Scrum and

continually improved it, leading to their 1995 paper, contributions to the Agile Manifesto[16] in 2001, and the
worldwide spread and use of Scrum since 2002.

In 1995, Sutherland and Schwaber jointly presented a paper describing the Scrum framework at the Business
Object Design and Implementation Workshop held as part of Object-Oriented Programming, Systems,

Languages & Applications '95 (OOPSLA '95) in Austin, Texas.[17] Over the following years, Schwaber and
Sutherland collaborated to combine this material—with their experience and evolving good practice—to develop

what became known as Scrum.[18]

In 2001, Schwaber worked with Mike Beedle to describe the method in the book, Agile Software Development

with Scrum.[19] Scrum's approach to planning and managing product development involves bringing decision-

making authority to the level of operation properties and certainties.[6]

In 2002, Schwaber with others founded the Scrum Alliance[20] and set up the Certified Scrum accreditation

series. Schwaber left the Scrum Alliance in late 2009 and founded Scrum.org[21] which oversees the parallel

Professional Scrum accreditation series.[22]

Since 2009, a public document called The Scrum Guide[18] has been published and updated by Schwaber and
Sutherland. It has been revised 5 times, with the current version being November 2017.

There are three roles in the Scrum framework.[23] These are ideally co-located to ensure optimal communication
among team members. While many organizations have other roles involved with defining and delivering the

product, Scrum defines only these three.[18]

Roles

Product owner

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

3 of 21 11/17/20, 6:56 PM

The product owner, representing the product's stakeholders and the voice of the customer (or may represent the

desires of a committee[24]), is responsible for delivering good business results.[25] Hence, the product owner is

accountable for the product backlog and for maximizing the value that the team delivers.[24] The product owner
defines the product in customer-centric terms (typically user stories), adds them to the Product Backlog, and

prioritizes them based on importance and dependencies.[26] A scrum team should have only one product owner

(although a product owner could support more than one team)[27] This role should not be combined with that of
the scrum master. The product owner should focus on the business side of product development and spend the
majority of their time liaising with stakeholders and the team. The product owner should not dictate how the

team reaches a technical solution, but rather will seek consensus among the team members.[28][29][30] This role
is crucial and requires a deep understanding of both sides: the business and the engineers (developers) in the
scrum team. Therefore a good product owner should be able to communicate what the business needs, ask why
they need it (because there may be better ways to achieve that), and convey the message to all stakeholders
including the Development Team using a technical language, as required. The Product Owner uses Scrum’s
empirical tools to manage highly complex work, while controlling risk and achieving value.

Communication is a core responsibility of the product owner. The ability to convey priorities and empathize
with team members and stakeholders is vital to steer product development in the right direction. The product
owner role bridges the communication gap between the team and its stakeholders, serving as a proxy for

stakeholders to the team and as a team representative to the overall stakeholder community.[31][32]

As the face of the team to the stakeholders, the following are some of the communication tasks of the product

owner to the stakeholders:[33]

Define and announce releases.

Communicate delivery and team status.

Share progress during governance meetings.

Share significant RIDAs (risks, impediments, dependencies, and assumptions) with
stakeholders.

Negotiate priorities, scope, funding, and schedule.

Ensure that the product backlog is visible, transparent and clear.

Empathy is a key attribute for a product owner to have—the ability to put one's self in another's shoes. A product
owner converses with different stakeholders, who have a variety of backgrounds, job roles, and objectives. A
product owner must be able to see from these different points of view. To be effective, it is wise for a product
owner to know the level of detail the audience needs. The development team needs thorough feedback and
specifications so they can build a product up to expectation, while an executive sponsor may just need
summaries of progress. Providing more information than necessary may lose stakeholder interest and waste time.

A direct means of communication is the most preferred by seasoned agile product owners.[27]

A product owner's ability to communicate effectively is also enhanced by being skilled in techniques that
identify stakeholder needs, negotiate priorities between stakeholder interests, and collaborate with developers to
ensure effective implementation of requirements.

The development team has from three to nine members who carry out all tasks required to build increments of

valuable output every sprint.[26]

Development team

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

4 of 21 11/17/20, 6:56 PM

While team members are referred to as developers in some literature[18], the term refers to anyone who plays a
role in the development and support of the system or product, and can include researchers, architects, designers,

data specialists, statisticians, analysts, engineers, programmers, and testers, among others.[23] However, due to
the confusion that can arise when some people do not feel the term 'developer' applies to them, they are often
referred to just as team members.

The team is self-organizing. While no work should come to the team except through the product owner, and the
scrum master is expected to protect the team from too much distraction, the team should still be encouraged to
interact directly with customers and/or stakeholders to gain maximum understanding and immediacy of

feedback.[26]

Scrum is facilitated by a scrum master, who is accountable for removing impediments to the ability of the team

to deliver the product goals and deliverables.[34] The scrum master is not a traditional team lead or project
manager but acts as a buffer between the team and any distracting influences. The scrum master ensures that the
scrum framework is followed. The scrum master helps to ensure the team follows the agreed processes in the
Scrum framework, often facilitates key sessions, and encourages the team to improve. The role has also been
referred to as a team facilitator or servant-leader to reinforce these dual perspectives.

The core responsibilities of a scrum master include (but are not limited to):[35]

Helping the product owner maintain the product backlog in a way that ensures the
needed work is well understood so the team can continually make forward progress

Helping the team to determine the definition of done for the product, with input from
key stakeholders

Coaching the team, within the Scrum principles, in order to deliver high-quality
features for its product[36]

Promoting self-organization within the team

Helping the scrum team to avoid or remove impediments to its progress, whether
internal or external to the team

Facilitating team events to ensure regular progress

Educating key stakeholders on Agile and Scrum principles

Coaching the development team in self-organization and cross-functionality

The scrum master helps people and organizations adopt empirical and lean thinking, leaving behind hopes for
certainty and predictability.

One of the ways the scrum master role differs from a project manager is that the latter may have people
management responsibilities and the scrum master does not. A scrum master provides a limited amount of

direction since the team is expected to be empowered and self-organizing.[37] Scrum does not formally recognise

the role of project manager, as traditional command and control tendencies would cause difficulties.[38]

Scrum master

Workflow

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

5 of 21 11/17/20, 6:56 PM

Scrum framework

The Scrum process

A sprint (also known as iteration or timebox) is the basic unit of
development in Scrum. The sprint is a timeboxed effort; that is, the
length is agreed and fixed in advance for each sprint and is normally
between one week and one month, with two weeks being the most

common.[6]

Each sprint starts with a sprint planning event that establishes a sprint
goal and the required product backlog items. The team accepts what they
agree is ready and translate this into a sprint backlog, with a breakdown
of the work required and an estimated forecast for the sprint goal. Each
sprint ends with a sprint review and sprint retrospective, that reviews
progress to show to stakeholders and identify lessons and improvements

for the next sprints.[15]

Scrum emphasizes valuable, useful output at the end of the sprint that is
really done. In the case of software, this likely includes that the software
has been fully integrated, tested and documented, and is potentially

releasable.[38]

At the beginning of a sprint, the scrum team holds a sprint planning event[39] to:

Mutually discuss and agree on the scope of work that is intended to be done during
that sprint

Select product backlog items that can be completed in one sprint

Prepare a sprint backlog that includes the work needed to complete the selected
product backlog items

Agree the sprint goal, a short description of what they are forecasting to deliver at
the end of the sprint.

The recommended duration is four hours for a two-week sprint (pro-rata for other
sprint durations) [18]

During the first half, the whole scrum team (development team, scrum master,
and product owner) selects the product backlog items they believe could be
completed in that sprint

During the second half, the development team identifies the detailed work (tasks)
required to complete those product backlog items; resulting in a confirmed sprint
backlog

As the detailed work is elaborated, some product backlog items may be split or
put back into the product backlog if the team no longer believes they can
complete the required work in a single sprint

Once the development team has prepared their sprint backlog, they forecast (usually
by voting) which tasks will be delivered within the sprint.

Sprint

Sprint planning

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

6 of 21 11/17/20, 6:56 PM

A daily scrum in the computing
room. This centralized location
helps the team start on time.

Each day during a sprint, the team holds a daily scrum (or stand-up)

with specific guidelines:[40][6]

All members of the development team come
prepared. The daily scrum:

starts precisely on time even if some development
team members are missing

should happen at the same time and place every
day

is limited (timeboxed) to fifteen minutes

Anyone is welcome, though only development team
members should contribute.

During the daily scrum, each team member typically answers three questions:

What did I complete yesterday that contributed to the team meeting our sprint
goal?

What do I plan to complete today to contribute to the team meeting our sprint
goal?

Do I see any impediment that could prevent me or the team from meeting our
sprint goal?

Any impediment (e.g., stumbling block, risk, issue, delayed dependency, assumption proved unfounded)[41]

identified in the daily scrum should be captured by the scrum master and displayed on the team's scrum board or
on a shared risk board, with an agreed person designated to working toward a resolution (outside of the daily
scrum). While the currency of work status is the whole team's responsibility, the scrum master often updates the

sprint burndown chart.[42] Where the team does not see the value in these events, it is the responsibility of the

scrum master to find out why.[43] This is part of the responsibility of educating the team and stakeholders about

the Scrum principles.[36]

No detailed discussions should happen during the daily scrum. Once the meeting ends, individual members can
get together to discuss issues in detail; such a meeting is sometimes known as a 'breakout session' or an 'after

party'.[42]

At the end of a sprint, the team holds two events: the sprint review and the sprint retrospective.

At the sprint review, the team:

reviews the work that was completed and the planned work that was not completed

presents the completed work to the stakeholders (a.k.a. the demo)

collaborates with the stakeholders on what to work on next

Guidelines for sprint reviews:

Daily scrum

Sprint review

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

7 of 21 11/17/20, 6:56 PM

Incomplete work cannot be demonstrated.

The recommended duration is two hours for a two-week sprint (proportional for other
sprint-durations).[18]

At the sprint retrospective, the team:

reflects on the past sprint

identifies and agrees on continuous process improvement actions

Guidelines for sprint retrospectives:

Three main questions arise in the sprint retrospective:

What went well during the sprint?

What did not go well?

What could be improved for better productivity in the next sprint?

The recommended duration is one-and-a-half hours for a two-week sprint
(proportional for other sprint duration(s)).

The scrum master facilitates this event.

Backlog refinement (formerly called grooming) is the ongoing process of reviewing product backlog items and
checking that they are appropriately prepared and ordered in a way that makes them clear and executable for
teams once they enter sprints via the sprint planning activity. Product backlog items may be broken into multiple
smaller ones. Acceptance criteria may be clarified. Dependencies may be identified and investigated.

Although not originally a core Scrum practice, backlog refinement has been added to the Scrum Guide and
adopted as a way of managing the quality of product backlog items entering a sprint, with a recommended

investment of up to 10% of a team's sprint capacity.[18][44]

The backlog can also include technical debt (also known as design debt or code debt). This is a concept in
software development that reflects the implied cost of additional rework caused by choosing an easy solution
now instead of using a better approach that would take longer.

The product owner can cancel a sprint if necessary.[18] The product owner may do so with input from the team,
scrum master or management. For instance, management may wish the product owner to cancel a sprint if
external circumstances negate the value of the sprint goal. If a sprint is abnormally terminated, the next step is to
conduct a new sprint planning, where the reason for the termination is reviewed.

Sprint retrospective

Backlog refinement

Cancelling a sprint

Artifacts

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

8 of 21 11/17/20, 6:56 PM

The product backlog is a breakdown of work to be done[45] and contains an ordered list of product requirements

that a scrum team maintains for a product. Common formats include user stories and use cases.[38] The
requirements define features, bug fixes, non-functional requirements, etc.—whatever must be done to deliver a
viable product. The product owner prioritizes product backlog items (PBIs) based on considerations such as
risk, business value, dependencies, size, and date needed.

The product backlog is what will be delivered, ordered into the sequence in which it should be delivered. It is
visible to everyone but may only be changed with the consent of the product owner, who is ultimately
responsible for ordering product backlog items for the development team to choose.

The product backlog contains the product owner's assessment of business value and the development team's
assessment of development effort, which are often, but not always, stated in story points using the rounded
Fibonacci scale. These estimates help the product owner to gauge the timeline and may influence the ordering of
product backlog items; for example, if two features have the same business value, the product owner may
schedule earlier delivery of the one with the lower development effort (because the return on investment is
higher) or the one with higher development effort (because it is more complex or riskier, and they want to retire

that risk earlier).[46]

The product backlog and the business value of each product backlog item is the responsibility of the product
owner. The effort to deliver each item is estimated by the development team in story points, or time. By
estimating in story points, the team reduces the dependency in individual developers; this is useful especially in
dynamic teams where developers are often assigned to other projects after sprint delivery. For instance, if a user
story is estimated as a 5 in effort (using Fibonacci sequence), it remains 5 regardless of how many developers are
working on it

Story points define the effort in a time-box, so they do not change with time. For instance, in one hour an
individual can walk, run, or climb, but the effort expended is clearly different. The gap progression between the
terms in the Fibonacci sequence encourages the team to deliver carefully considered estimates. Estimates of 1, 2
or 3 imply similar efforts (1 being trivial), but if the team estimates an 8 or 13 (or higher), the impact on both
delivery and budget can be significant. The value of using story points is that the team can reuse them by
comparing similar work from previous sprints, but it should be recognized that estimates are relative to the team.
For example, an estimate of 5 for one team could be a 2 for another having senior developers and higher skills.

Every team should have a product owner, although in many instances a product owner could work with more

than one team.[27] The product owner is responsible for maximizing the value of the product. The product owner
gathers input and takes feedback from, and is lobbied by, many people, but ultimately makes the call on what
gets built.

The product backlog:

Captures requests to modify a product—including new features, replacing old
features, removing features, and fixing issues

Ensures the development team has work that maximizes business benefit to the
product owner

Typically, the product owner and the scrum team work together to develop the breakdown of work; this becomes
the product backlog, which evolves as new information surfaces about the product and about its customers, and
so later sprints may address new work.

Product backlog

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

9 of 21 11/17/20, 6:56 PM

A scrum task board

A product backlog, in its simplest form, is merely a list of items to work on. Having well-established rules about
how work is added, removed and ordered helps the whole team make better decisions about how to change the

product.[47]

The product owner prioritizes product backlog items based on which are needed soonest. The team then chooses
which items they can complete in the coming sprint. On the scrum board, the team moves items from the
product backlog to the sprint backlog, which is the list of items they will build. Conceptually, it is ideal for the
team to only select what they think they can accomplish from the top of the list, but it is not unusual to see in
practice that teams are able to take lower-priority items from the list along with the top ones selected. This
normally happens because there is time left within the sprint to accommodate more work. Items at the top of the
backlog, the items to work on first, should be broken down into stories that are suitable for the development
team to work on. The further down the backlog goes, the less refined the items should be. As Schwaber and

Beedle put it "The lower the priority, the less detail until you can barely make out the backlog item."[6]

As the team works through the backlog, it must be assumed that change happens outside their environment—the
team can learn about new market opportunities to take advantage of, competitor threats that arise, and feedback
from customers that can change the way the product was meant to work. All of these new ideas tend to trigger
the team to adapt the backlog to incorporate new knowledge. This is part of the fundamental mindset of an agile

team. The world changes, the backlog is never finished.[48]

The sprint backlog is the list of work the development team must

address during the next sprint.[49] The list is derived by the scrum team
progressively selecting product backlog items in priority order from the
top of the product backlog until they feel they have enough work to fill
the sprint. The development team should keep in mind its past
performance assessing its capacity for the new-sprint, and use this as a
guideline of how much 'effort' they can complete.

The product backlog items may be broken down into tasks by the

development team.[49] Tasks on the sprint backlog are never assigned (or
pushed) to team members by someone else; rather team members sign
up for (or pull) tasks as needed according to the backlog priority and
their own skills and capacity. This promotes self-organization of the
development team and developer buy-in.

The sprint backlog is the property of the development team, and all
included estimates are provided by the development team. Often an
accompanying task board is used to see and change the state of the tasks
of the current sprint, like to do, in progress and done.

Once a sprint backlog is committed, no additional work can be added to the sprint backlog except by the team.
Once a sprint has been delivered, the product backlog is analyzed and reprioritized if necessary, and the next set
of functionality is selected for the next sprint.

Management

Sprint backlog

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

10 of 21 11/17/20, 6:56 PM

A sample burndown chart for a
completed sprint, showing
remaining effort at the end of
each day.

A sample burn-up chart for a
release, showing scope
completed each sprint (MVP =
Minimum Viable Product)

The increment is the potentially releasable output of the sprint that meets the sprint goal. It is formed from all
the completed sprint backlog items, integrated with the work of all previous sprints. The increment must be
complete, according to the scrum team's definition of done (DoD), fully functioning, and in a usable condition
regardless of whether the product owner decides to actually deploy and use it.

The following artifacts and techniques can be used to help people use Scrum.[18]

The sprint burndown chart is a publicly displayed chart showing

remaining work in the sprint backlog.[50] Updated every day, it gives a
simple view of the sprint progress. It also provides quick visualizations
for reference. The horizontal axis of the sprint burndown chart shows
the days in a sprint, while the vertical axis shows the amount of work
remaining each day (typically representing the estimate of hours of work
remaining).

During sprint planning, the ideal burndown chart is plotted. Then,
during the sprint, each member picks up tasks from the sprint backlog
and works on them. At the end of the day, they update the remaining
hours for tasks to be completed. In such a way, the actual burndown
chart is updated day by day.

It should not be confused with an earned value chart.

The release burn-up chart is a way for the team to provide visibility and
track progress toward a release. Updated at the end of each sprint, it
shows progress toward delivering a forecast scope. The horizontal axis of
the release burn-up chart shows the sprints in a release, while the
vertical axis shows the amount of work completed at the end of each
sprint (typically representing cumulative story points of work
completed). Progress is plotted as a line that grows up to meet a
horizontal line that represents the forecast scope; often shown with a
forecast, based on progress to date, that indicates how much scope might
be completed by a given release date or how many sprints it will take to
complete the given scope.

The release burn-up chart makes it easy to see how much work has been
completed, how much work has been added or removed (if the horizontal scope line moves), and how much
work is left to be done.

Increment

Extensions

Sprint burndown chart

Release burn-up chart

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

11 of 21 11/17/20, 6:56 PM

The start criteria to determine whether the specifications and inputs are set enough to start the work item, i.e. a
user story.

The exit-criteria to determine whether a product backlog item is complete. In many cases, the DoD requires that
all regression tests be successful. The definition of done may vary from one scrum team to another but must be

consistent within one team.[51]

The total effort a team is capable of in a sprint. The number is derived by evaluating the work (typically in user
story points) completed in the last sprint. The collection of historical velocity data is a guideline for assisting the
team in understanding how much work they can achieve.

A time-boxed period used to research a concept or create a simple prototype. Spikes can either be planned to
take place in between sprints or, for larger teams, a spike might be accepted as one of many sprint delivery
objectives. Spikes are often introduced before the delivery of large or complex product backlog items in order to
secure budget, expand knowledge, or produce a proof of concept. The duration and objective(s) of a spike is
agreed between product owner and development team before the start. Unlike sprint commitments, spikes may
or may not deliver tangible, shippable, valuable functionality. For example, the objective of a spike might be to
successfully reach a decision on a course of action. The spike is over when the time is up, not necessarily when

the objective has been delivered.[52]

Also called a drone spike, a tracer bullet is a spike with the current architecture, current technology set, current
set of best practices that result in production quality code. It might just be a very narrow implementation of the
functionality but is not throwaway code. It is of production quality, and the rest of the iterations can build on this
code. The name has military origins as ammunition that makes the path of the bullet visible, allowing for
corrections. Often these implementations are a 'quick shot' through all layers of an application, such as

connecting a single form's input field to the back-end, to prove the layers connect as expected.[53]

The benefits of Scrum may be more difficult to achieve when:[54][55]

Teams whose members are geographically dispersed or part-time: In Scrum,
developers should have close and ongoing interaction, ideally working together in the
same space most of the time. While recent improvements in technology have reduced
the impact of these barriers (e.g., being able to collaborate on a digital whiteboard),
the Agile manifesto asserts that the best communication is face to face.[56]

Definition of ready (DoR)

Definition of done (DoD)

Velocity

Spike

Tracer bullet

Limitations

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

12 of 21 11/17/20, 6:56 PM

Teams whose members have very specialized skills: In Scrum, developers
should have T-shaped skills, allowing them to work on tasks outside of their
specialization. This can be encouraged by good Scrum leadership. While team
members with very specific skills can and do contribute well, they should be
encouraged to learn more about and collaborate with other disciplines.

Products with many external dependencies: In Scrum, dividing product
development into short sprints requires careful planning; external dependencies, such
as user acceptance testing or coordination with other teams, can lead to delays and
the failure of individual sprints.

Products that are mature or legacy or with regulated quality control: In
Scrum, product increments should be fully developed and tested in a single sprint;
products that need large amounts of regression testing or safety testing (e.g., medical
devices or vehicle control) for each release are less suited to short sprints than to
longer waterfall releases.

Like other agile methods, effective adoption of Scrum can be supported through a wide range of tools.

Many companies use universal tools, such as spreadsheets to build and maintain artifacts such as the sprint
backlog. There are also open-source and proprietary software packages for Scrum—which are either dedicated
to product development using the Scrum framework or support multiple product development approaches
including Scrum.

Other organizations implement Scrum without software tools and maintain their artifacts in hard-copy forms

such as paper, whiteboards, and sticky notes.[57]

Scrum is a feedback-driven empirical approach which is, like all empirical process control, underpinned by the
three pillars of transparency, inspection, and adaptation. All work within the Scrum framework should be visible
to those responsible for the outcome: the process, the workflow, progress, etc. In order to make these things
visible, scrum teams need to frequently inspect the product being developed and how well the team is working.
With frequent inspection, the team can spot when their work deviates outside of acceptable limits and adapt

their process or the product under development.[26]

These three pillars require trust and openness in the team, which the following five values of Scrum enable:[18]

1. Commitment: Team members individually commit to achieving their team goals, each
and every sprint.

2. Courage: Team members know they have the courage to work through conflict and
challenges together so that they can do the right thing.

3. Focus: Team members focus exclusively on their team goals and the sprint backlog;
there should be no work done other than through their backlog.

4. Openness: Team members and their stakeholders agree to be transparent about their
work and any challenges they face.

5. Respect: Team members respect each other to be technically capable and to work

Tools for implementation

Scrum values

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

13 of 21 11/17/20, 6:56 PM

with good intent.

The hybridization of Scrum with other software development methodologies is common as Scrum does not
cover the whole product development lifecycle; therefore, organizations find the need to add in additional
processes to create a more comprehensive implementation. For example, at the start of product development,
organizations commonly add process guidance on the business case, requirements gathering and prioritization,

initial high-level design, and budget and schedule forecasting.[58]

Various authors and communities of people who use Scrum have also suggested more detailed techniques for
how to apply or adapt Scrum to particular problems or organizations. Many refer to these methodological

techniques as 'patterns' - by analogy with design patterns in architecture and software.[59][60]

Scrumban is a software production model based on Scrum and Kanban. Scrumban is especially suited for
product maintenance with frequent and unexpected work items, such as production defects or programming
errors. In such cases the time-limited sprints of the Scrum framework may be perceived to be of less benefit,
although Scrum's daily events and other practices can still be applied, depending on the team and the situation at
hand. Visualization of the work stages and limitations for simultaneous unfinished work and defects are familiar
from the Kanban model. Using these methods, the team's workflow is directed in a way that allows for minimum
completion time for each work item or programming error, and on the other hand ensures each team member is

constantly employed.[61]

To illustrate each stage of work, teams working in the same space often use post-it notes or a large

whiteboard.[62] In the case of decentralized teams, stage-illustration software such as Assembla, JIRA or Agilo
can be used.

The major differences between Scrum and Kanban is that in Scrum work is divided into sprints that last a fixed
amount of time, whereas in Kanban the flow of work is continuous. This is visible in work stage tables, which in
Scrum are emptied after each sprint, whereas in Kanban all tasks are marked on the same table. Scrum focuses

on teams with multifaceted know-how, whereas Kanban makes specialized, functional teams possible.[61]

The scrum of scrums is a technique to operate Scrum at scale, for multiple teams working on the same product,
allowing them to discuss progress on their interdependencies, focusing on how to coordinate delivering

software,[63] especially on areas of overlap and integration. Depending on the cadence (timing) of the scrum of
scrums, the relevant daily scrum for each scrum team ends by designating one member as an ambassador to
participate in the scrum of scrums with ambassadors from other teams. Depending on the context, the

ambassadors may be technical contributors or each team's scrum master.[63]

Rather than simply a progress update, the scrum of scrums should focus on how teams are collectively working
to resolve, mitigate, or accept any risks, impediments, dependencies, and assumptions (RIDAs) that have been
identified. The scrum of scrums tracks these RIDAs via a backlog of its own, such as a risk board (sometimes

known as a ROAM board after the initials of resolved, owned, accepted, and mitigated),[64] which typically leads

Adaptations

Scrumban

Scrum of scrums

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

14 of 21 11/17/20, 6:56 PM

to greater coordination and collaboration between teams.[63]

This should run similar to a daily scrum, with each ambassador answering the following four questions:[65]

What risks, impediments, dependencies, or assumptions has your team resolved
since we last met?

What risks, impediments, dependencies, or assumptions will your team resolve before
we meet again?

Are there any new risks, impediments, dependencies, or assumptions slowing your
team down or getting in their way?

Are you about to introduce a new risk, impediment, dependency, or assumption that
will get in another team's way?

As Jeff Sutherland commented,[63]

Since I originally defined the Scrum of Scrums (Ken Schwaber was at IDX working with me), I can
definitively say the Scrum of Scrums is not a 'meta Scrum'. The Scrum of Scrums as I have used it
is responsible for delivering the working software of all teams to the Definition of Done at the end
of the sprint, or for releases during the sprint. PatientKeeper delivered to production four times per
Sprint. Ancestry.com delivers to production 220 times per two-week Sprint. Hubspot delivers live
software 100-300 times a day. The Scrum of Scrums Master is held accountable for making this
work. So the Scrum of Scrums is an operational delivery mechanism.

Large-scale Scrum (LeSS) is a product development framework that extends Scrum with scaling rules and
guidelines without losing the original purposes of Scrum.

There are two levels to the framework: the first LeSS level is designed for up to eight teams; the second level,
known as 'LeSS Huge', introduces additional scaling elements for development with up to hundreds of
developers. "Scaling Scrum starts with understanding and being able to adopt standard real one-team Scrum.
Large-scale Scrum requires examining the purpose of single-team Scrum elements and figuring out how to reach

the same purpose while staying within the constraints of the standard Scrum rules."[66]

Bas Vodde and Craig Larman evolved the LeSS framework from their experiences working with large-scale
product development, especially in the telecoms and finance industries. It evolved by taking Scrum and trying
many different experiments to discover what works. In 2013, the experiments were solidified into the LeSS

framework rules.[67] The intention of LeSS is to 'descale' organization complexity, dissolving unnecessary
complex organizational solutions, and solving them in simpler ways. Less roles, less management, less

organizational structures.[68]

Ceremonial Scrum meetings have been reported to be hurting productivity and wasting time that could be better

spent on actual productive tasks.[69][70]

Large-scale Scrum

Criticisms

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

15 of 21 11/17/20, 6:56 PM

Scrum practices, when not correctly implemented in the spirit of the Agile Manifesto, have a tendency to

become a form of micromanagement.[71]

Scrum also assumes that the amount of effort required for completing certain tasks can be accurately quantified

using metrics, although most of the time this can be quite unpredictable. [72]

Agile testing

Disciplined agile delivery

High-performance teams

Lean software development

Project management

Scrumedge

Unified Process

1. Schwaber, Ken; Sutherland, Jeff (November 2017), The Scrum Guide: The Definitive
Guide to Scrum: The Rules of the Game (https://www.scrumguides.org/docs/scrumgui
de/v2017/2017-Scrum-Guide-US.pdf) (PDF), retrieved May 13, 2020

2. "Lessons learned: Using Scrum in non-technical teams" (https://www.agilealliance.org/
resources/experience-reports/lessons-learned-using-scrum-in-non-technical-teams/).
Agile Alliance. Retrieved April 8, 2019.

3. "Scrum, What's in a Name? - DZone Agile" (https://dzone.com/articles/scrum-whats-in
-a-name). dzone.com.

4. "Should "SCRUM" be written in all caps?" (https://stackoverflow.com/q/6389423).
stackoverflow.com. Retrieved January 10, 2017.

5. Schwaber, Ken. "Scrum.org Ken Schwaber" (https://www.scrum.org/team/ken-schwabe
r).

6. Schwaber, Ken (February 1, 2004). Agile Project Management with Scrum (https://arch
ive.org/details/agileprojectmana0000schw). Microsoft Press. ISBN 978-0-7356-1993-7.

7. Schwaber, Ken (2004). "SCRUM Development Process" (http://www.jeffsutherland.org/
oopsla/schwapub.pdf) (PDF). Advanced Development Methods.

8. Johnson, Hillary Louise (January 13, 2011). "ScrumMaster vs scrum master: What do
you think?" (http://www.agilelearninglabs.com/2011/01/scrummaster-vs-scrum-master
/). agilelearninglabs.com. Retrieved May 10, 2017.

9. "What is Scrum?" (https://www.scrumalliance.org/why-scrum). What is Scrum? An
Agile Framework for Completing Complex Projects - Scrum Alliance. Scrum Alliance.
Retrieved February 24, 2016.

10. Verheyen, Gunther (March 21, 2013). "Scrum: Framework, not methodology" (http://g
untherverheyen.com/2013/03/21/scrum-framework-not-methodology/). Gunther
Verheyen. Gunther Verheyen. Retrieved February 24, 2016.

See also

References

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

16 of 21 11/17/20, 6:56 PM

11. J. Henry and S. Henry. Quantitative assessment of the software maintenance process
and requirements volatility. In Proc. of the ACM Conference on Computer Science,
pages 346–351, 1993.

12. Takeuchi, Hirotaka; Nonaka, Ikujiro (January 1, 1986). "The New New Product
Development Game" (https://cb.hbsp.harvard.edu/cbmp/product/86116-PDF-ENG).
Harvard Business Review. Retrieved June 9, 2010. "Moving the Scrum Downfield"

13. The Knowledge Creating Company (https://books.google.com/books?id=B-qxrPaU1-M
C&dq=The+Knowledge+Creating+Company&printsec=frontcover). Oxford University
Press. 1995. p. 3. ISBN 9780199762330. Retrieved March 12, 2013.

14. "Scrum" (https://www.lexico.com/definition/Scrum). Lexico UK Dictionary. Oxford
University Press.

15. Sutherland, Jeff (October 2004). "Agile Development: Lessons learned from the first
Scrum" (https://web.archive.org/web/20140630020607/http://www.scrumalliance.org/r
esource_download/35). Archived from the original (https://www.scrumalliance.org/reso
urce_download/35) (PDF) on June 30, 2014. Retrieved September 26, 2008.

16. "Manifesto for Agile Software Development" (https://agilemanifesto.org). Retrieved
October 17, 2019.

17. Sutherland, Jeffrey Victor; Schwaber, Ken (1995). Business object design and
implementation: OOPSLA '95 workshop proceedings. The University of Michigan.
p. 118. ISBN 978-3-540-76096-2.

18. Ken Schwaber; Jeff Sutherland. "The Scrum Guide" (http://www.scrumguides.org/docs/
scrumguide/v2016/2016-Scrum-Guide-US.pdf) (PDF). Scrum.org. Retrieved
October 27, 2017.

19. Schwaber, Ken; Beedle, Mike (2002). Agile software development with Scrum. Prentice
Hall. ISBN 978-0-13-067634-4.

20. Maximini, Dominik (January 8, 2015). The Scrum Culture: Introducing Agile Methods in
Organizations (https://books.google.com/books?id=ShojBgAAQBAJ). Management for
Professionals. Cham: Springer (published 2015). p. 26. ISBN 9783319118277.
Retrieved August 25, 2016. "Ken Schwaber and Jeff Sutherland presented Scrum for
the first time at the OOPSLA conference in Austin, Texas, in 1995. [...] In 2001, the
first book about Scrum was published. [...] One year later (2002), Ken founded the
Scrum Alliance, aiming at providing worldwide Scrum training and certification."

21. "Home" (https://www.scrum.org/index). Scrum.org. Retrieved January 6, 2020.

22. Partogi, Joshua (July 7, 2013). "Certified Scrum Master vs Professional Scrum Master"
(http://blog.leanagile.in/post/54764080535/certified-scrum-master-vs-professional-scr
um). Lean Agile Institute. Retrieved May 10, 2017.

23. Rad, Nader K.; Turley, Frank (2018). Agile Scrum Foundation Courseware, Second
Edition. 's-Hertogenbosch, Netherlands: Van Haren. p. 26. ISBN 9789401802796.

24. McGreal, Don; Jocham, Ralph (June 4, 2018). The Professional Product Owner:
Leveraging Scrum as a Competitive Advantage (https://books.google.com/books?id=c
EBbDwAAQBAJ&pg=PT173&dq=scrum+product+owner+accountable+backlog#q=sc
rum%20product%20owner%20accountable%20backlog). Addison-Wesley Professional.
ISBN 9780134686653.

25. Rubin, Kenneth (2013), Essential Scrum. A Practical Guide to the Most Popular Agile
Process, Addison-Wesley, p. 173, ISBN 978-0-13-704329-3

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

17 of 21 11/17/20, 6:56 PM

26. Morris, David (2017). Scrum: an ideal framework for agile projects. In Easy Steps.
pp. 178–179. ISBN 9781840787313. OCLC 951453155 (https://www.worldcat.org/oclc/
951453155).

27. Cohn, Mike. Succeeding with Agile: Software Development Using Scrum. Upper Saddle
River, NJ: Addison-Wesley, 2010.

28. "The Scrum Guide" (http://www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum
-Guide-US.pdf) (PDF).

29. The Scrum guide. http://www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum-
Guide-US.pdf. p. 6.

30. "The Role of the Product Owner" (https://www.scrumalliance.org/learn-about-scrum/co
mmunity-webinars/webinar-replays/scrum-fundamentals/the-role-of-the-product-owne
r). Scrum Alliance. Retrieved May 26, 2018.

31. Pichler, Roman (March 11, 2010). Agile Product Management with Scrum: Creating
Products that Customers Love. Addison-Wesley Professional. ISBN 978-0-321-68413-4.

32. Ambler, Scott. "The Product Owner Role: A Stakeholder Proxy for Agile Teams" (http://
agilemodeling.com/essays/productOwner.htm). agilemodeling.com. Retrieved July 22,
2016. "[...] in practice there proves to be two critical aspects to this role: first as a
stakeholder proxy within the development team and second as a project team
representative to the overall stakeholder community as a whole."

33. "The Product Owner Role" (http://scrum-master.thinkific.com/pages/the-product-owner
-role). Scrum Master Test Prep. Retrieved February 3, 2017.

34. Carroll, N, O’Connor, M. and Edison, H. (2018). The Identification and Classification of
Impediments to Software Flow, The Americas Conference on Information Systems
(AMCIS 2018), August 16–18, New Orleans, Louisiana, USA.

35. "Core Scrum" (https://www.scrumalliance.org/why-scrum/core-scrum-values-roles).
Scrum Alliance. Retrieved January 25, 2015.

36. Drongelen, Mike van; Dennis, Adam; Garabedian, Richard; Gonzalez, Alberto;
Krishnaswamy, Aravind (2017). Lean Mobile App Development: Apply Lean startup
methodologies to develop successful iOS and Android apps. Birmingham, UK: Packt
Publishing Ltd. p. 43. ISBN 9781786467041.

37. Cobb, Charles G. (2015). The Project Manager's Guide to Mastering Agile: Principles
and Practices for an Adaptive Approach. Hoboken, NJ: John Wiley & Sons. p. 37.
ISBN 9781118991046.

38. Pete Deemer; Gabrielle Benefield; Craig Larman; Bas Vodde (December 17, 2012).
"The Scrum Primer: A Lightweight Guide to the Theory and Practice of Scrum (Version
2.0)" (http://www.infoq.com/minibooks/Scrum_Primer). InfoQ.

39. Gangji, Arif; Hartman, Bob (2015). "Agile SCRUM For Denver Web Development" (htt
p://www.neonrain.com/agile-scrum-web-development). Neon Rain Interactive.
Retrieved September 25, 2015.

40. "What is a Daily Scrum?" (https://www.scrum.org/resources/what-is-a-daily-scrum).
Scrum.org. Retrieved January 6, 2020.

41. Little, Joe (January 17, 2011). "Impediment Management" (http://agileconsortium.blog
spot.com/2011/01/impediment-management.html). Agile Consortium.

42. Flewelling, Paul (2018). The Agile Developer's Handbook: Get more value from your
software development: get the best out of the Agile methodology. Birmingham, UK:
Packt Publishing Ltd. p. 91. ISBN 9781787280205.

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

18 of 21 11/17/20, 6:56 PM

43. McKenna, Dave (2016). The Art of Scrum: How Scrum Masters Bind Dev Teams and
Unleash Agility. Aliquippa, PA: CA Press. p. 126. ISBN 9781484222768.

44. Cho, L (2009). "Adopting an Agile Culture A User Experience Team's Journey". 2009
Agile Conference. Agile Conference. pp. 416–421. doi:10.1109/AGILE.2009.76 (https://
doi.org/10.1109%2FAGILE.2009.76). ISBN 978-0-7695-3768-9. S2CID 11201935 (http
s://api.semanticscholar.org/CorpusID:11201935).

45. Sedano, Todd; Ralph, Paul; Péraire, Cécile. "The Product Backlog" (https://www.researc
hgate.net/publication/330823863). IEEE.

46. Higgins, Tony (March 31, 2009). "Authoring Requirements in an Agile World" (http://w
ww.batimes.com/articles/authoring-requirements-in-an-agile-world.html). BA Times.

47. "The product backlog: your ultimate to-do list" (https://www.atlassian.com/agile/backl
ogs). Atlassian. Retrieved July 20, 2016.

48. Pichler, Roman. Agile Product Management with Scrum: Creating Products that
Customers Love. Upper Saddle River, NJ: Addison-Wesley, 2010.

49. Russ J. Martinelli; Dragan Z. Milosevic (January 5, 2016). Project Management ToolBox:
Tools and Techniques for the Practicing Project Manager (https://books.google.com/bo
oks?id=SbA7CwAAQBAJ&pg=PA304). Wiley. p. 304. ISBN 978-1-118-97320-2.

50. Charles G. Cobb (January 27, 2015). The Project Manager's Guide to Mastering Agile:
Principles and Practices for an Adaptive Approach (https://books.google.com/books?id
=vHjTBQAAQBAJ&pg=PA378). John Wiley & Sons. p. 378. ISBN 978-1-118-99104-6.

51. Ken Schwaber, Agile Project Management with Scrum, p.55

52. "Create a Spike Solution" (http://www.extremeprogramming.org/rules/spike.html).
Extreme Programming.

53. Sterling, Chris (October 22, 2007). "Research, Spikes, Tracer Bullets, Oh My!" (http://w
ww.gettingagile.com/2007/10/22/research-spikes-tracer-bullets-oh-my/). Getting Agile.
Retrieved October 23, 2016.

54. Turk, Dan; France, Robert; Rumpe, Bernhard (2014) [2002]. "Limitations of Agile
Software Processes". Proceedings of the Third International Conference on Extreme
Programming and Flexible Processes in Software Engineering: 43–46.
arXiv:1409.6600v1 (https://arxiv.org/abs/1409.6600v1).

55. "Issues and Challenges in Scrum Implementation" (http://www.ijser.org/researchpaper/
Issues-and-Challenges-in-Scrum-Implementation.pdf) (PDF). International Journal of
Scientific & Engineering Research. 3 (8). August 2012. Retrieved December 10, 2015.

56. Kent Beck; James Grenning; Robert C. Martin; Mike Beedle; Jim Highsmith; Steve
Mellor; Arie van Bennekum; Andrew Hunt; Ken Schwaber; Alistair Cockburn; Ron
Jeffries; Jeff Sutherland; Ward Cunningham; Jon Kern; Dave Thomas; Martin Fowler;
Brian Marick (2001). "Principles behind the Agile Manifesto" (http://agilemanifesto.org/
principles.html). Agile Alliance. Retrieved August 7, 2017.

57. Dubakov, Michael (2008). "Agile Tools. The Good, the Bad and the Ugly" (http://target
process.com/download/whitepaper/agiletools.pdf) (PDF). Retrieved August 30, 2010.

58. Hron, M.; Obwegeser, N. (January 2018). "Scrum in practice: an overview of Scrum
adaptations" (http://pure.au.dk/portal/files/116906219/Hron_Obwegeser_Scrum_in_pr
actice_An_overview_of_Scrum_adaptations.pdf) (PDF). Proceedings of the 2018 51st
Hawaii International Conference on System Sciences (HICSS), January 3-6, 2018.

59. Bjørnvig, Gertrud; Coplien, Jim (June 21, 2008). "Scrum as Organizational Patterns" (ht
tps://sites.google.com/a/scrumorgpatterns.com/www/). Gertrude & Cope.

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

19 of 21 11/17/20, 6:56 PM

60. "Scrum Pattern Community" (http://www.scrumplop.org). ScrumPLoP.org. Retrieved
July 22, 2016.

61. Kniberg, Henrik; Skarin, Mattias (December 21, 2009). "Kanban and Scrum - Making
the most of both" (https://www.infoq.com/minibooks/kanban-scrum-minibook) (PDF).
InfoQ. Retrieved July 22, 2016.

62. Ladas, Corey (October 27, 2007). "scrum-ban" (http://leansoftwareengineering.com/ks
se/scrum-ban/). Lean Software Engineering. Retrieved September 13, 2012.

63. "Scrum of Scrums" (https://guide.agilealliance.org/guide/scrumofscrums.html). Agile
Alliance. December 17, 2015.

64. "Risk Management – How to Stop Risks from Screwing Up Your Projects!" (http://www.
allaboutagile.com/risk-management-how-to-stop-risks-from-screwing-up-your-projects
/). Kelly Waters.

65. "Scrum of Scrums" (http://scrummastertest.com/scrum-of-scrums/). Scrum Master
Test Prep. Retrieved May 29, 2015.

66. Larman; scrumyear=2013. "Scaling Agile Development (Crosstalk journal, November /
December 2013)" (http://www.crosstalkonline.org/storage/issue-archives/2013/20130
5/201305-larman.pdf) (PDF).

67. "Large-Scale Scrum (LeSS)" (http://less.works). 2014.

68. Grgic (2015). "Descaling organisation with LeSS (Blog)" (https://leanarch.eu/2015/05/0
9/descaling-organisation-with-less-2/).

69. Jenson, John (March 8, 2019). "Meetings: The productivity killer for developers" (http
s://www.tandemseven.com/blog/meetings-productivity-killer-for-developers/).
TandemSeven - The Experience Innovation Company. Retrieved June 5, 2020.

70. Matters, Business (December 4, 2019). "Not all developers like agile, and here are 5
reasons why" (https://www.bmmagazine.co.uk/in-business/not-all-developers-like-agile
-and-here-are-5-reasons-why/). Business Matters. Retrieved June 5, 2020.

71. on, Isaak Tsalicoglou. "How to transition from Agile to micromanagement | Hacker
Noon" (https://hackernoon.com/how-to-transition-from-agile-to-micromanagement-de
9247c26e11). hackernoon.com. Retrieved June 5, 2020.

72. Cagle, Kurt. "The End of Agile" (https://www.forbes.com/sites/cognitiveworld/2019/08/
23/the-end-of-agile/). Forbes. Retrieved June 5, 2020.

Vacaniti, Daniel (February 2018). "The Kanban Guide for Scrum Teams" (https://scrum
org-website-prod.s3.amazonaws.com/drupal/2018-02/2018%20Kanban%20Guide%20f
or%20Scrum%20Teams_0.pdf) (PDF). scrum.org. Retrieved March 12, 2018.

Sutherland, Jeff; Schwaber, Ken (2013). "Scrum Guides" (http://www.scrumguides.org
/). ScrumGuides.org. Retrieved July 26, 2017.

Verheyen, Gunther (2013). Scrum - A Pocket Guide (A Smart Travel Companion)
ISBN 978-9087537203.

Münch, Jürgen; Armbrust, Ove; Soto, Martín; Kowalczyk, Martin (2012). Software
Process Definition and Management. ISBN 978-3-642-24291-5.

Deemer, Pete; Benefield, Gabrielle; Larman, Craig; Vodde, Bas (2009). "The Scrum
Primer" (http://www.scrumprimer.org). Retrieved June 1, 2009.

Janoff, N.S.; Rising, L. (2000). "The Scrum Software Development Process for Small

Further reading

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

20 of 21 11/17/20, 6:56 PM

Teams" (http://faculty.salisbury.edu/~xswang/Research/Papers/SERelated/scrum/s402
6.pdf) (PDF). Retrieved February 26, 2015.

Agile Alliance's Scrum library (https://cf.agilealliance.org/articles/article_list.cfm?Categ
oryID=17)

A Scrum Process Description (https://web.archive.org/web/20170605114816/http://ep
f.eclipse.org/wikis/scrum/) by the Eclipse Process Framework (EPF) Project

Retrieved from "https://en.wikipedia.org/w/index.php?title=Scrum_(software_development)&
oldid=987790195"

This page was last edited on 9 November 2020, at 07:27 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply.
By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark
of the Wikimedia Foundation, Inc., a non-profit organization.

External links

Scrum (software development) - Wikipedia https://en.wikipedia.org/wiki/Scrum_(software_development)

21 of 21 11/17/20, 6:56 PM

